3.2.49 \(\int \frac {\sqrt {a+b \tan (e+f x)} (A+B \tan (e+f x)+C \tan ^2(e+f x))}{\sqrt {c+d \tan (e+f x)}} \, dx\) [149]

Optimal. Leaf size=290 \[ -\frac {\sqrt {a-i b} (i A+B-i C) \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {c-i d} f}+\frac {\sqrt {a+i b} (i A-B-i C) \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {c+i d} f}-\frac {(b c C-2 b B d-a C d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b \tan (e+f x)}}{\sqrt {b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {b} d^{3/2} f}+\frac {C \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}{d f} \]

[Out]

-(-2*B*b*d-C*a*d+C*b*c)*arctanh(d^(1/2)*(a+b*tan(f*x+e))^(1/2)/b^(1/2)/(c+d*tan(f*x+e))^(1/2))/d^(3/2)/f/b^(1/
2)-(I*A+B-I*C)*arctanh((c-I*d)^(1/2)*(a+b*tan(f*x+e))^(1/2)/(a-I*b)^(1/2)/(c+d*tan(f*x+e))^(1/2))*(a-I*b)^(1/2
)/f/(c-I*d)^(1/2)+(I*A-B-I*C)*arctanh((c+I*d)^(1/2)*(a+b*tan(f*x+e))^(1/2)/(a+I*b)^(1/2)/(c+d*tan(f*x+e))^(1/2
))*(a+I*b)^(1/2)/f/(c+I*d)^(1/2)+C*(a+b*tan(f*x+e))^(1/2)*(c+d*tan(f*x+e))^(1/2)/d/f

________________________________________________________________________________________

Rubi [A]
time = 1.95, antiderivative size = 290, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 8, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {3728, 3736, 6857, 65, 223, 212, 95, 214} \begin {gather*} -\frac {\sqrt {a-i b} (i A+B-i C) \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{f \sqrt {c-i d}}+\frac {\sqrt {a+i b} (i A-B-i C) \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{f \sqrt {c+i d}}-\frac {(-a C d-2 b B d+b c C) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b \tan (e+f x)}}{\sqrt {b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {b} d^{3/2} f}+\frac {C \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}{d f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + b*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/Sqrt[c + d*Tan[e + f*x]],x]

[Out]

-((Sqrt[a - I*b]*(I*A + B - I*C)*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Ta
n[e + f*x]])])/(Sqrt[c - I*d]*f)) + (Sqrt[a + I*b]*(I*A - B - I*C)*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f
*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[c + I*d]*f) - ((b*c*C - 2*b*B*d - a*C*d)*ArcTanh[(Sqrt[
d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])])/(Sqrt[b]*d^(3/2)*f) + (C*Sqrt[a + b*Tan[e +
f*x]]*Sqrt[c + d*Tan[e + f*x]])/(d*f)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3728

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*
tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*(a + b*Tan[e + f*x])^m*((c + d
*Tan[e + f*x])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e + f
*x] - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !Intege
rQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3736

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x
]}, Dist[ff/f, Subst[Int[(a + b*ff*x)^m*(c + d*ff*x)^n*((A + B*ff*x + C*ff^2*x^2)/(1 + ff^2*x^2)), x], x, Tan[
e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right )}{\sqrt {c+d \tan (e+f x)}} \, dx &=\frac {C \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}{d f}+\frac {\int \frac {\frac {1}{2} (-b c C+2 a A d-a C d)+(A b+a B-b C) d \tan (e+f x)-\frac {1}{2} (b c C-2 b B d-a C d) \tan ^2(e+f x)}{\sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}} \, dx}{d}\\ &=\frac {C \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}{d f}+\frac {\text {Subst}\left (\int \frac {\frac {1}{2} (-b c C+2 a A d-a C d)+(A b+a B-b C) d x+\frac {1}{2} (-b c C+2 b B d+a C d) x^2}{\sqrt {a+b x} \sqrt {c+d x} \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{d f}\\ &=\frac {C \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}{d f}+\frac {\text {Subst}\left (\int \left (\frac {-b c C+2 b B d+a C d}{2 \sqrt {a+b x} \sqrt {c+d x}}+\frac {-(b B-a (A-C)) d+(A b+a B-b C) d x}{\sqrt {a+b x} \sqrt {c+d x} \left (1+x^2\right )}\right ) \, dx,x,\tan (e+f x)\right )}{d f}\\ &=\frac {C \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}{d f}+\frac {\text {Subst}\left (\int \frac {-(b B-a (A-C)) d+(A b+a B-b C) d x}{\sqrt {a+b x} \sqrt {c+d x} \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{d f}-\frac {(b c C-2 b B d-a C d) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx,x,\tan (e+f x)\right )}{2 d f}\\ &=\frac {C \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}{d f}+\frac {\text {Subst}\left (\int \left (\frac {-i (b B-a (A-C)) d-(A b+a B-b C) d}{2 (i-x) \sqrt {a+b x} \sqrt {c+d x}}+\frac {-i (b B-a (A-C)) d+(A b+a B-b C) d}{2 (i+x) \sqrt {a+b x} \sqrt {c+d x}}\right ) \, dx,x,\tan (e+f x)\right )}{d f}-\frac {(b c C-2 b B d-a C d) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b \tan (e+f x)}\right )}{b d f}\\ &=\frac {C \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}{d f}+\frac {((i a+b) (A-i B-C)) \text {Subst}\left (\int \frac {1}{(i+x) \sqrt {a+b x} \sqrt {c+d x}} \, dx,x,\tan (e+f x)\right )}{2 f}+\frac {((i a-b) (A+i B-C)) \text {Subst}\left (\int \frac {1}{(i-x) \sqrt {a+b x} \sqrt {c+d x}} \, dx,x,\tan (e+f x)\right )}{2 f}-\frac {(b c C-2 b B d-a C d) \text {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}\right )}{b d f}\\ &=-\frac {(b c C-2 b B d-a C d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b \tan (e+f x)}}{\sqrt {b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {b} d^{3/2} f}+\frac {C \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}{d f}+\frac {((i a+b) (A-i B-C)) \text {Subst}\left (\int \frac {1}{-a+i b-(-c+i d) x^2} \, dx,x,\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}\right )}{f}+\frac {((i a-b) (A+i B-C)) \text {Subst}\left (\int \frac {1}{a+i b-(c+i d) x^2} \, dx,x,\frac {\sqrt {a+b \tan (e+f x)}}{\sqrt {c+d \tan (e+f x)}}\right )}{f}\\ &=-\frac {\sqrt {a-i b} (i A+B-i C) \tanh ^{-1}\left (\frac {\sqrt {c-i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a-i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {c-i d} f}-\frac {\sqrt {a+i b} (B-i (A-C)) \tanh ^{-1}\left (\frac {\sqrt {c+i d} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+i b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {c+i d} f}-\frac {(b c C-2 b B d-a C d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b \tan (e+f x)}}{\sqrt {b} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {b} d^{3/2} f}+\frac {C \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}{d f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 4.34, size = 450, normalized size = 1.55 \begin {gather*} \frac {C \sqrt {a+b \tan (e+f x)} \sqrt {c+d \tan (e+f x)}}{d f}-\frac {\frac {\left (-b (A b+a B-b C)+\sqrt {-b^2} (b B+a (-A+C))\right ) d \tanh ^{-1}\left (\frac {\sqrt {-c+\frac {\sqrt {-b^2} d}{b}} \sqrt {a+b \tan (e+f x)}}{\sqrt {-a+\sqrt {-b^2}} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {-a+\sqrt {-b^2}} \sqrt {-c+\frac {\sqrt {-b^2} d}{b}}}+\frac {\left (b (A b+a B-b C)+\sqrt {-b^2} (b B+a (-A+C))\right ) d \tanh ^{-1}\left (\frac {\sqrt {c+\frac {\sqrt {-b^2} d}{b}} \sqrt {a+b \tan (e+f x)}}{\sqrt {a+\sqrt {-b^2}} \sqrt {c+d \tan (e+f x)}}\right )}{\sqrt {a+\sqrt {-b^2}} \sqrt {c+\frac {\sqrt {-b^2} d}{b}}}+\frac {\sqrt {b} \sqrt {c-\frac {a d}{b}} (b c C-2 b B d-a C d) \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b \tan (e+f x)}}{\sqrt {b} \sqrt {c-\frac {a d}{b}}}\right ) \sqrt {\frac {b (c+d \tan (e+f x))}{b c-a d}}}{\sqrt {d} \sqrt {c+d \tan (e+f x)}}}{b d f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + b*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/Sqrt[c + d*Tan[e + f*x]],x]

[Out]

(C*Sqrt[a + b*Tan[e + f*x]]*Sqrt[c + d*Tan[e + f*x]])/(d*f) - (((-(b*(A*b + a*B - b*C)) + Sqrt[-b^2]*(b*B + a*
(-A + C)))*d*ArcTanh[(Sqrt[-c + (Sqrt[-b^2]*d)/b]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[-a + Sqrt[-b^2]]*Sqrt[c + d*
Tan[e + f*x]])])/(Sqrt[-a + Sqrt[-b^2]]*Sqrt[-c + (Sqrt[-b^2]*d)/b]) + ((b*(A*b + a*B - b*C) + Sqrt[-b^2]*(b*B
 + a*(-A + C)))*d*ArcTanh[(Sqrt[c + (Sqrt[-b^2]*d)/b]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + Sqrt[-b^2]]*Sqrt[c +
 d*Tan[e + f*x]])])/(Sqrt[a + Sqrt[-b^2]]*Sqrt[c + (Sqrt[-b^2]*d)/b]) + (Sqrt[b]*Sqrt[c - (a*d)/b]*(b*c*C - 2*
b*B*d - a*C*d)*ArcSinh[(Sqrt[d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[b]*Sqrt[c - (a*d)/b])]*Sqrt[(b*(c + d*Tan[e +
f*x]))/(b*c - a*d)])/(Sqrt[d]*Sqrt[c + d*Tan[e + f*x]]))/(b*d*f)

________________________________________________________________________________________

Maple [F]
time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\sqrt {a +b \tan \left (f x +e \right )}\, \left (A +B \tan \left (f x +e \right )+C \left (\tan ^{2}\left (f x +e \right )\right )\right )}{\sqrt {c +d \tan \left (f x +e \right )}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x)

[Out]

int((a+b*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*tan(f*x + e)^2 + B*tan(f*x + e) + A)*sqrt(b*tan(f*x + e) + a)/sqrt(d*tan(f*x + e) + c), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a + b \tan {\left (e + f x \right )}} \left (A + B \tan {\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}\right )}{\sqrt {c + d \tan {\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))**(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)**2)/(c+d*tan(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(e + f*x))*(A + B*tan(e + f*x) + C*tan(e + f*x)**2)/sqrt(c + d*tan(e + f*x)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F(-1)]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \text {Hanged} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*tan(e + f*x))^(1/2)*(A + B*tan(e + f*x) + C*tan(e + f*x)^2))/(c + d*tan(e + f*x))^(1/2),x)

[Out]

\text{Hanged}

________________________________________________________________________________________